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Abstract

The mechanical properties of a deformed workpiece are sensitive to the initial mi-

crostructure. Often, the initial microstructure is random in nature and location specific.

To model the variability of properties of the workpiece induced by variability in the

initial microstructure, one needs to develop a reduced order stochastic input model for

the initial microstructure. The location-dependence of microstructures dramatically in-

creases the dimensionality of the stochastic input and causes the “curse of dimension-

ality” in a stochastic deformation simulation. To quantify and capture the propagation

of uncertainty in multiscale deformation processes, a novel data-driven bi-orthogonal

Karhunen-Loève (KL) decomposition strategy is introduced. The multiscale random

field representing random microstructures over the workpiece is decomposed simul-

taneously into a few modes in the macroscale and mesoscale. The macro modes are

further expanded through a second-level KL expansion to separate the random and

spatial coordinates. The few resulting random variables are mapped to the uniform

distribution via a polynomial chaos (PC) expansion. As a result, the stochastic input

complexity is remarkably simplified. Sampling from the reduced random space, new

microstructure realizations are reconstructed. By collecting the properties of work-

pieces with randomly sampled microstructures, the property statistics are computed. A

high-dimensional multiscale disk forging example of FCC nickel is presented to show

the merit of this methodology, and the effect of random initial crystallographic texture
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1. Introduction

For polycrystalline materials (e.g. metals, alloys, etc.), macroscale properties are

sensitive to the underlying microstructure. In this work, we are interested in model-

ing the variability of properties of the workpiece in a deformation process induced by

variability in the initial microstructure. To accurately evaluate the properties of a given

microstructure at a given material point, homogenization strategy over a statistical vol-

ume element (SVE) [1, 2, 3] has been widely applied. In the context of polycrystalline

materials, an SVE is a microstructure containing finite number of grains (see Fig. 1)

with features (grain and texture distribution) that satisfy certain statistical constraints.

Given a number of correlated realizations of the microstructure, a stochastic data-driven

model of the microstructure is produced that when coupled with uncertainty quantifi-

cation methods (e.g. Monte Carlo or sparse grid methods) can be used to compute

the distribution of properties at the material point. However, in order to investigate the

variability of macroscopic properties in a workpiece due to microstructure randomness,

we need to exploit the stochastic space of initial microstructures in the workpiece and

not simply at a material point.

Microstructure uncertainty at a material point has been extensively studied using a

variety of methods. In [4, 5] the principle of maximum entropy (MaxEnt) was used to

describe the microstructure topology of binary and polycrystalline materials. A set of

correlation functions or grain size moments were given as the prescribed constraints.

Realizations of microstructures were then sampled from such MaxEnt distribution and

interrogated using appropriate physical model, e.g. a crystal plasticity finite element

method (CPFEM) [6] for polycrystals. The Monte Carlo (MC) method was adopted

to find the error-bars of effective stress-strain response of FCC aluminum. In [7], the

orientation distribution function (ODF) was adopted to describe the polycrystalline mi-
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crostructure. A number of ODF samples were given as the input data. Karhunen-Loève

expansion (KLE) [8, 9] was utilized to reduce the input complexity and facilitate the

high-dimensional stochastic simulation. An adaptive version of sparse grid collocation

strategy [10, 11] was used to find the stress-strain curve with error bars and the convex

hull of elastic modulus of FCC aluminum after deformation. Mechanical response vari-

ability and thermal properties due to both orientation and grain size uncertainties were

studied in [12, 13]. A nonlinear model reduction technique based on manifold learn-

ing [14] has been introduced to find the surrogate space of the grain size feature while

grain orientations were reduced by KLE. Critical stress distribution after deformation

was constructed for FCC nickel [12] and effective thermal conductivity distribution

was explored for crystals with ortho-symmetry [13]. Recently, variability of fatigue

resistance, measured by strain-based fatigue indicator parameters (FIPs) [15] of two-

phase nickel-based superalloys was studied with the assistance of principal component

analysis (PCA) [16]. Distributions of FIPs, as well as their convex hulls showing the

extreme values, of microstructures sharing identical statistical features with given sam-

ples under cyclic loading were extracted. Convergence with increasing dimensionality

of the reduced-order representation was also shown.

To quantify the effect of microstructures on macro-properties and probe the un-

certainty propagation through different length scales, a multiscale simulator needs to

be adopted. Each point of the workpiece is associated with a microstructure in the

mesoscale, the deformation of which is controlled by the local deformation gradient

estimated in the macroscale. Mechanical properties/response of the point are evalu-

ated via proper (e.g. crystal plasticity) constitutive model applied on the deformed

microstructure. Since microstructures are random, properties of the workpiece are also

random. In general, microstructures are location-specific (meaning that microstruc-

tures associated with different spatial points may have different distributions) [17]. As

a result, the stochastic input to the probabilistic multiscale forging simulation will be

extremely high dimensional, which prevents one from quantifying the uncertainties of

interested properties. This problem is usually referred to as the “curse of dimensional-

ity”. Conventional model reduction schemes that only locally decompose input com-

plexity within a single scale and cannot see the correlation between macroscale points
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are not sufficient for reducing the multiscale stochastic input. To this end, we intro-

duced a bi-orthogonal KLE strategy [18, 19], which decomposes the multiscale random

field into a few modes in both the macro- and meso-scales [20]. Mean and standard

deviation of elastic moduli, i.e. Young’s modulus, shear modulus, and bulk modulus,

over the product were investigated given texture (orientation distribution) uncertainty

of FCC copper microstructures. However, this earlier work limited its stochastic in-

put to two prescribed random variables. In this work, we will build the bi-orthogonal

KLE on the basis of a given set of microstructure data. Different types of macroscale

inner products are discussed. A second-level KLE is conducted to further reduce the

dimensionality of the stochastic space after bi-orthogonal decomposition. The optimal

dimensionality of the final reduced-order space will be determined based on the energy

proportion captured by the principal components in the two-step decomposition. A

non-intrusive strategy is used to project the reduced random variables to the space of

random variables with known probability distributions. Low order statistics of equiv-

alent stress, strain, and strength fields of disks after forging are studied by repeatedly

calling the deterministic solver using microstructures sampled in the reduced space.

We use Monte Carlo (MC) sampling to construct the stochastic solution.

The rest of the paper is organized as follows. In Section 2, the representation of

microstructure and the multiscale forging simulator are introduced. Theory and formu-

lation of the bi-orthogonal KL decomposition, followed by a second-level KLE to fur-

ther decompose the resulting spatial-random coupled modes, will be enunciated in Sec-

tion 3. The reduced microstructure representations are mapped to a multi-dimensional

uniform distribution via polynomial chaos expansion (PCE) so that sampling of mi-

crostructures becomes efficient. The detail of this procedure is presented in Section 4.

Problem definition and generation of initial samples are described in Section 5. Sec-

tion 6 shows an example of stochastic multiscale modeling of nickel disk forging. Prop-

erties/response variability of the product will be investigated. Finally, conclusions and

discussion are given in Section 7.
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2. Multiscale Modeling of a Forging Process

To study the variability of mechanical properties induced by microstructure un-

certainty in forging disks, a multiscale framework which couples finite element (FE)

large deformation simulator with crystal plasticity constitutive model is introduced as

the deterministic solver. Each point in the macroscale is linked to a mesoscale poly-

crystalline microstructure described by its grain size and orientation features. The me-

chanical properties and response of the material under deformation are evaluated in the

microstructure domain and returned to the workpiece.

2.1. Multiscale Forging Solver

An updated Lagrangian implicit FE model for the analysis of large deformation

forging processes is employed for the multiscale simulation. This model, seamlessly

integrating kinematic, contact, and constitutive modules, is suitable for forging problem

of any material subjected to various die shapes. A crystal plasticity model is used in this

work. Each point (effectively, Gauss integration point) of the macroscale workpiece is

represented by a polycrystalline microstructure whose deformation is controlled by the

local deformation gradientF, while the mechanical properties/response (e.g. effective

stress, strain, strength, etc.) at that point are evaluated in the mesoscale and returned

to the workpiece after homogenization [21]. The multiscale framework is summarized

below.

Macroscale: Let X be a material particle in the initial configurationB0 andx =

x(X, tn+1) be its location at timetn+1. The total deformation gradient defined as

F(X, tn+1) = ∇0x(X, tn+1) =
∂x(X, tn+1)

∂X
, (1)

can be expressed as the product ofFn at the previous time stept = tn and the relative

deformation gradientFr :

F = FrFn. (2)

The equilibrium equation att = tn+1 is expressed in the reference configurationBn

as

∇n · 〈Pr〉h + fr = 0, (3)

5



where∇n denotes the divergence inBn. fr can be represented as

fr = detFrb, (4)

whereb is the body force defined on the current configuration. The material behavior

is obtained from the deformation of the microstructure through homogenization. The

function 〈·〉h denotes the homogenized property over the microstructure. Therefore,

〈Pr〉h is the homogenized first Piola-Kirchhoff (PK) stress expressed per unit area of

Bn and given as:

〈Pr〉h = 〈detFs
rTFs−T

r 〉h = detFr〈T〉hF−T
r , (5)

whereFs
r is the mesoscale relative deformation gradient, which equals the macroscopic

Fr under Taylor hypothesis for macro-meso linking.〈T〉h is the homogenized Cauchy

stress defined as the volume average of the mesoscale stressT:

〈T〉h = T̄ =
1
V

∫

Bn+1

TdV. (6)

An incremental quasi-static problem is solved to determine the displacement field

u(xn, tn+1) that satisfies Eq. (3) and boundary conditions. The solution of the deforma-

tion problem proceeds incrementally in time starting from the initial configurationB0.

The weak form of the governing equation in the presence of die contact can be written

as:

G̃(un+1, ũ) ≡ G̃b(un+1, ũ) + G̃c(un+1, ũ) = 0, (7)

where the first term is the virtual work of the workpiece:

G̃b(un+1, ũ) =

∫

Bn

〈P〉h ·
∂ũ
∂xn

dV

−
(∫

∂Bn+1

t̄ · ũdS+
∫

Bn+1

b̄ · ũdV

)

, (8)

and the second term is the contact virtual work:

G̃c(un+1, ũ) =
∫

∂Bc
n

(−t̄cN · ũ + t̄cT · ũ)dS, (9)

whereũ is the virtual displacement;̄t is the traction and̄b is the body force of the bulk;

∂Bc
n ⊂ ∂Bn is the surface corresponding to regions of the body that may potentially

6



come into contact with the die.̄tcN and t̄cT are the normal and tangential tractions at

the die due to contact (and friction). The contact work is calculated in the reference

configurationBn. Newton-Raphson iterative scheme along with a line search method is

used to solve this non-linear system. The linearization of the weak form at the (k+1)-th

iteration becomes

G̃(u(k)
n+1, ũ) +

∂G̃

∂u(k)
n+1

(u(k+1)
n+1 − u(k)

n+1) = 0. (10)

The increment of internal work̃Gb is computed by

dG̃b =

∫

Bn

d〈Pr〉h ·
∂ũ
∂xn

dV. (11)

The linearization of the homogenized PK-I stress is

d〈Pr〉h = detFr

(

tr(dFrF−1
r )〈T〉h

− 〈T〉h(dFrF
−1
r )T + 〈dT〉h

)

F−T
r . (12)

The homogenized Cauchy stress〈T〉h and its gradient with respect todFr are evaluated

using the constitutive model in the mesoscale.

Mesoscale:As mentioned earlier, each Gauss point of the workpiece in the macroscale

corresponds to a polycrystalline microstructure, which is described by the sizes and ori-

entations of its constituent grains. According to the Taylor hypothesis, all grains of the

same microstructure are subject to the same deformation gradientF, which is identical

to the local deformation gradient at that point of the workpiece. The mechanical re-

sponse of each grain is computed using the crystal plasticity constitutive model [6, 22]

and averaged over the microstructure to represent the corresponding quantity in the

macroscale. In this paper, we are interested in FCC nickel polycrystals. For details of

the constitutive model, the reader is referred to [23]. We here only briefly review the

main algorithm.

The total deformation gradientF is multiplicatively decomposed into elastic and

plastic parts

F = FeFp, (13)

whereFe is the elastic deformation gradient andFp is the plastic counterpart with
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detFp being 1. The PK-II stress is computed by

T̂ = LeEe =
1
2
Le(FeTFe− I ), (14)

whereLe is the fourth-order elasticity tensor represented in the sample coordinate sys-

tem andI is the second-order identity tensor.

The resolved shear stressτ(α) on slip systemα is calculated as

τ(α) = T̂ : S(α), (15)

whereS(α) ≡ m(α) ⊗ n(α) is the Schmid tensor defined by the tensor product of the

slip directionm(α) and slip normaln(α) of slip systemα. If |τ(α)| is larger than the slip

resistanceκ(α), plastic flow on theα-th slip system occurs. The incremental plastic

shear strain∆γ(α) is therefore obtained according to flow rule and utilized to update the

slip resistance, deformation gradient, etc. The Taylor strain hardening law based on

dislocation densityρ is adopted for the homogeneous evolution of slip resistanceκ.

κ = κ0 + αtµb
√
ρ, (16)

where

ρ̇ =
∑

α

(

1
Lgb
+ k1
√
ρ − k2ρ

)

|γ̇(α)|, (17)

andαt is a constant representing an average of the junction strength over all existing

dislocation configurations,µ is the shear strength, andb is the magnitude of the Burgers

vector. The first term in Eq. (17) represents a geometric storage due to lattice incompat-

ibility, describing the grain boundary hardening.Lg is the grain size parameter [12, 24].

The second term describes storage through a statistical measure of forest dislocation,

describing the dislocation interaction hardening inside grains. The last term represents

a dynamic recovery rate that renders dislocation segments inactive as they rearrange

themselves [22]. The parametersk1 andk2 are given as

k1 =
2θ0

αtµb
, k2 =

2θ0

κs − κ0
, (18)

whereθ0 is the initial hardening rate,κ0 andκs are the initial yield stress and saturation

strength, respectively. Substituting Eqs. (17) and (18) into Eq. (16), we can derive at
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the hardening rate as

κ̇ =

{

α2
t µ

2b

2Lg(κ − κ0)
+ θ0

(

κs − κ
κs − κ0

)}

∑

α

|γ̇(α)|. (19)

Therefore, the slip resistance att = tn+1 is updated as

κn+1 = κn + κ̇∆ t. (20)

An iterative algorithm is designed to solve this system of nonlinear equations. Macro-

scopic quantities, such as stress and strain, are computed as the volume-average of the

mesoscale values over all grains (e.g. Eq. (6)). The macroscopic von-Mises equivalent

stress and equivalent strain are calculated in the form of

σ̄e f f =

√

3
2

T̄′ · T̄′, (21)

whereT̄′ is the deviatoric part of the homogenized Cauchy stressT̄, and

ε̄e f f =

∫ t

0

√

2
3

D̄ · D̄dt, (22)

in which D̄ is the average rate of deformation. Grain orientations evolve accordingly

due to elastic deformation:

m(α) = Fem(α)
0 ,

n(α) = Fe−Tn(α)
0 . (23)

The equivalent strength is evaluated as the average slip resistance of all slip systems

of all grains in the microstructure:

κ̄e f f =

〈

1
nslip

nslip
∑

α

κ(α)

〉

h

. (24)

The homogenized properties and response are returned to the macroscale for up-

dating the deformation and response fields of the workpiece. The verification of this

particular crystal plasticity constitutive model is discussed in [12].

2.2. Microstructure Representation

In the current work, the Taylor hypothesis is adopted for the macro-mesoscale

linking. Accordingly, a microstructure (Fig. 1(a)) can be simply described by an ar-

ray of topological and orientational features of constituent grains (Fig. 1(b)). For a
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microstructure (e.g. FCC nickel) composed ofM grains, the firstM components of

the feature array are sizes of individual grains sorted in ascending order and the rest

3M components are the corresponding orientations described by Rodrigues parame-

ters [25], an axis-angle representation that consists of three components defined in

Eq. (25):

r = w tan
θ

2
, (25)

wherer = {r1, r2, r3} are the three Rodrigues components;w = {w1,w2,w3} gives the

direction cosines of the rotation axis with respect to microstructure coordinates; andθ

is the rotation angle.
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Figure 1: (a) A 3D polycrystalline microstructure with 20 grains. (b) The descriptor of the microstructure.

The first 20 components are the sizes of grains, and the last 60 components are the Rodrigues parameters

representing grain orientations.

The polycrystalline microstructure is usually a high-dimensional random field, which

makes the stochastic simulation intractable. For example, a 20-dimensional vector is

needed to store the grain size feature of a microstructure containing 20 grains. The

vector will end up to be 80-dimensional when Rodrigues parametrization orientations

are considered as well. The situation is even worse when the random field is also a

function of spatial locationx. If the correlation between microstructures at different

points on macroscale is not explored, the dimensionality of the random field explodes.

For a random 2D workpiece discretized bynel quadrilateral elements each of which

hasnint Gauss points, the total dimensionality of the microstructure descriptor ends up

to be 4Mnelnint, whereM is the number of grains in the microstructure. In the current

work, we assume the random source is only the grain orientations while the grain sizes
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are fixed. The total dimensionality of the microstructure stochastic space is therefore

3Mnelnint, which is still very large. This is referred to as the “curse of dimensional-

ity”. A reduced-order surrogate microstructure model of the location dependent ran-

dom microstructure is needed. By sampling from the low-dimensional surrogate space,

uncertainty quantification of the product properties driven by random microstructures

becomes computationally feasible.

3. Two-Step Karhunen-Loève Decomposition of the Multiscale Random Microstruc-

ture Field

In our previous works on quantifying uncertainties in materials, a set of linear

and non-linear model reduction techniques were developed to facilitate the solution

of stochastic partial differential equations (SPDEs) describing physical processes in

random media [14, 26, 27, 28]. These methods have been successfully applied to re-

duce the dimensionality of random microstructures at a given material point. However,

these techniques cannot be applied to location-dependent microstructures (Fig. 2), e.g.

reducing a random microstructure field of the formA(x, s,ω), wheres is a mesoscale

coordinate andx the macroscopic coordinates. A bi-orthogonal decomposition based

on KL expansion was introduced to address this problem in [20]. This algorithm was

originally developed for temporal-spatial coupled problems [18], in which the random

field , A(x, t,ω), is a function of both timet and spatial coordinatesx. Following cer-

tain modification, we have applied this idea to multiscale forging problem in [20]. In

the current work, we rebuild the bi-orthogonal KLE strictly on the basis of given data

and generalize the model to the scenario that the information of the inherent controlling

random variables is not known beforehand. The stochastic random fieldA(x, s,ω) is

decomposed to a set of mesoscale modesΨ(s) and macro (or spatial)-random coupled

modesΦ(x,ω). A second-level KLE is introduced to further separate random variables

ω from the macroscale (spatial) modes. The optimal dimensionality of the reduced-

order space will be determined based on the number of principal components preserved

in the two-step KLE. Different selections of the inner product in the macroscale are dis-

cussed to determine which one is more appropriate for this problem. The algorithm of
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bi-orthogonal decomposition (BOD) is summarized below.

Figure 2: Microstructure dependence on spatial location. At different locations, the microstructures may

have different features due to preprocessing.

3.1. Bi-Orthogonal Karhunen-Loève Decomposition

Assume a random fieldA defined on a probability space (Ω, F, p)

A(x, s,ω) : S ×M×Ω→ R, (26)

whereS is the macroscale spatial domain,M is the microstructure space,Ω is the set

of elementary events andω ∈ Ω is a random field that determines the uncertainty ofA

(we call it controlling random variable).A = {Ai , i = 1, . . . ,m} can be the combination

of m independent features, e.g., grain size, texture, etc., for describing a microstructure.

In the example shown later,m is chosen to be 1 as crystallographic texture is the only

random source. The formulation presented in this section takes the general situation

whereA is the combination of various features. One can use the idea of Karhunen-

Loève expansion to project this field to a set of bi-orthogonal bases in the form of

A(x, s,ω) = Ā(x, s) + Â(x, s,ω)

= Ā(x, s) +
∞
∑

i=1

√

ρ
(h)
i Ψ

(h)
i (s)Φ(h)

i (x,ω), (27)

in whichρ(h)
i are eigenvalues of the eigenvalue problem to be defined later on,Ψ

(h)
i are

mesoscale modes strongly orthogonal in the meso-space, andΦi = {Φ(h),1
i , . . .Φ

(h),m
i }

are spatial modes weakly orthogonal in macro-space for all them features. The su-

perscript (h) = 1, 2, 3 denotes that we can construct the above expansion according to
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certain type of inner products in the macroscale.Ā is the mean field defined by

Ā = 〈A〉 :=
∫

Ω

A(x, s,ω)p(ω)dω, (28)

wherep(ω) is the multivariate joint probability density ofω. The definition ofĀ is not

unique. For example, in [19], this mean field is also averaged over the temporal domain

(analogous to the mesoscale space in the current setup), leavingĀ a function of spatial

coordinates:Ā = Ā(x). We here do not average it over the meso domain to be con-

sistent with the previous work [20]. In practice, the random fieldA(x, s,ω) is usually

given byN realizations{A i(x, s,ωi)}Ni=1. As a consequence, the mean field is computed

as the average of all given samples. For model reduction, the sum in Eq. (27) is usually

approximated by the first finite number of, sayd, principal components (modes) that

capture most of the energy.

We denote by (, ) the inner product in the microstructure domain and by{, }h (h =

1, 2, or 3) different types of inner products in the spatial domain [19], respectively, and

obtain

(Ψ(h)
i ,Ψ

(h)
j ) :=

∫

M
Ψ

(h)
i (s)Ψ(h)

j (s)ds, (29)

and

{Φ(h)
i ,Φ

(h)
j }0 :=

∫

S
〈Φ(h)

i 〉 · 〈Φ
(h)
j 〉dx,

{Φ(h)
i ,Φ

(h)
j }1 :=

∫

S
〈Φ(h)

i ·Φ
(h)
j 〉dx,

{Φ(h)
i ,Φ

(h)
j }2 :=

∫

S

(

〈Φ(h)
i ·Φ

(h)
j 〉 − 〈Φ

(h)
i 〉 · 〈Φ

(h)
j 〉

)

dx. (30)

In this work, the microstructure features are given in the form of discrete vectors (i.e.

grain orientations) and the mesoscale coordinates can be considered as the indices of

the vector components. Therefore, the inner product in the mesoscale is effectively

computed by the dot product of the two vectors. The orthogonality requirements for

Ψ
(h)
i andΦ(h)

i are

(Ψ(h)
i ,Ψ

(h)
j ) = δi j , (31)

and

{Φ(h)
i ,Φ

(h)
j }h = δi j . (32)
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The mesoscale modesΨ(h)
i are strongly orthogonal to each other and the macroscale

modesΦ(h)
i are weakly, in an average sense, orthogonal.

By minimizing the distance (based on the norm defined in Eq. (30)) between the

Karhunen-Loève expansion and the original random field, one ends up with

Ψ
(h)
i (s) =

1
√

ρ
(h)
i

{Â,Φ(h)
i }h, (33)

and from the orthogonality condition, we obtain

Φ
(h)
i (x,ω) =

1
√

ρ
(h)
i

∫

M
Â(x, s,ω)Ψ(h)

i (s)ds. (34)

These last two Eqs. (33) and (34) lead to the following eigenvalue problem

ρ
(h)
i Ψ

(h)
i (s) =

∫

M
C(h)(s, ś)Ψ(h)

i (ś)dś, (35)

where the covariance matrixC(h) is

C(h)(s, ś) = {Â(x, s,ω), Â(x, ś,ω)}h. (36)

In discrete form, the covariance can be written as

C(0)(s, ś) =

nel
∑

in=1

nint
∑

im=1

















1
N

N
∑

j=1

Â j(x
in
im
, s)

















·

















1
N

N
∑

j=1

ÂT
j (xin

im
, ś)

















Ŵim|Jin|,

C(1)(s, ś) =
1
N

N
∑

j=1

nel
∑

in=1

nint
∑

im=1

Â j(x
in
im
, s)ÂT

j (xin
im
, ś)Ŵim|Jin |,

C(2)(s, ś) = C(1)(s, ś) − C(0)(s, ś), (37)

for different definition of macroscale inner products. In these equations,N is the num-

ber of realizations,nel is the number of elements in macroscale (when a FEM dis-

cretization of the domain is created),nint is the number of integration points in each el-

ement,|Jin | is the Jacobian determinant of the elementin, Ŵim is the integration weight

associated with the integration pointim andÂ is a matrix containing microstructural

features corresponding to integration points, andxin
im

represents global coordinates of

the integration pointim of elementin in the macroscale.
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The three types of covariance matrix defined in Eq. (37) (or equivalently, the in-

ner products in the macroscale Eq. (30)) lead to constructions of different expansions

Eq. (27) according to different optimization of the random field̂A: throughh = 0, we

minimize the mean error; throughh = 1, we minimize the second-order moment of

the error (the Euclidian distance between the KL expansion and the random field); and

throughh = 2, we minimize the standard deviation error. The discussion of the three

types will be further enunciated later with a practical example.

3.2. A Second-Level KLE

With the bi-orthogonal KL expansion, we decompose the random fieldA(x, s,ω)

into a set of mesoscale modes{Ψi} and spatial-random coupled modes{Φi}. The dimen-

sionality of the original stochastic microstructure space can be reduced by truncating

the bi-orthogonal KLE (Eq. (27)) tod terms, which capture most of the “energy” of the

given samples. The truncated bi-orthogonal KLE is given by Eq. (38).

A(x, s,ω) ≈ Ā(x, s) +
d

∑

i=1

√

ρ
(h)
i Ψ

(h)
i (s)Φ(h)

i (x,ω). (38)

The mesoscale modes are known as the eigenvectors of the covariance matrix and

only depend on the mesoscale coordinatess. The macroscale modes, on the other

hand, couple the random sourceω with spatial coordinatesx, and they are still high-

dimensional random fields. To further reduce the dimensionality, the spatial-random

coupled modes resulting from the bi-orthogonal KL expansion need further decompo-

sition. A conventional strategy is to separate the random variablesω from the spatial

coordinatesx using a polynomial chaos expansion (Eq. (39)),

Φ
(h)
i (x,ω) =

∑

j

γ
(h)
i j (x)Υ(h)

j (ζ(ω)), (39)

whereΥ(h)
j (ζ(ω)) are orthogonal polynomials of random variablesζ(ω), which usually

follow well-known probability distributions. In the current problem, however, the com-

putation of location-specific coefficientsγ(h)
i j (x) is very complicated asΦ(h)

i (x,ω) are

random fields in terms of spatial coordinatesx and are known only in the form ofN

(equal to the number of initial samples) finite number of realizations derived from the

15



bi-orthogonal KLE. The PCE cannot be applied in a straightforward manner to these

macro-random coupled modes.

We hereby, propose two reasonable assumptions to simplify the problem and em-

ploy a second-level KLE to decompose the random variables from spatial coordinates.

The assumptions are:

• The inherent controlling random variablesω can be separated from the mesoscale

and macroscale coordinates (s, x), as well as the features of the microstructure

(i.e. the randomness is independent of the microstructure features, e.g. texture

and grain size have the same random source).

• The macroscale modes,{Φ(h)
i }, are independent from each other.

The first assumption is natural since it is the fundamental of the decomposition.

The second assumption is a strong assumption for arbitrary stochastic processes, since

we only have the weak orthogonality condition between macroscale modes (Eq. (32)).

However, it is important for the further decomposition of the spatial modesΦi(x,ω)

and we will see later on in this paper that this assumption leads to accurate results.

Having the above two assumptions, we can next perform a second-level KLE on

each macro-random coupled modeΦi . Omitting the subscript (h), thei-th macro-mode

Φi(x,ωi) can be expanded by

Φi(x,ωi) ≈ Φ̄i(x) +
r i

∑

j=1

√

λ
j
i ψ

j
i (x)φ j

i (ωi), Φ̄i =
1
N

N
∑

i=1

Φ
k
i , (40)

whereλ j
i andψ j

i are thej-th eigenvalue and eigenvector, respectively, of the covariance

matrix,

C̃i =
1

N − 1

N
∑

k=1

(

Φ
k
i − Φ̄i

)T (

Φ
k
i − Φ̄i

)

, (41)

andr i is the number of largest eigenvalues{λ j
i }

r i
j=1 that capture most of the energy of

the samples.{φ j
i }

r i

j=1, wherei = 1, . . . , d, are the reduced representations of the original

multiscale microstructures.

In this way, the macro-random coupled modes{Φi} are decomposed into basis func-

tions depending on the macroscale coordinatesx and uncorrelated random variables
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{φ j
i }. Note that the dimensionality of the stochastic space is reduced for the second

time. The dimensionality of the final reduced random space of microstructures over

the macroscale is the sum of the principal dimensions that are preserved for represent-

ing macro-random modes:

r =
d

∑

i=1

r i , (42)

whered is the truncated dimensionality of the bi-orthogonal KLE (Eq. (38)). The

reduced stochastic space can then be constructed and equivalently mapped to well-

known probability distributions through polynomial chaos expansion introduced in the

next section.

4. Polynomial Chaos Expansion of Stochastic Reduced-Order Model

After obtaining reduced representations ({φ j
i }

r i
j=1, wherei = 1, . . . , d) of the multi-

scale microstructure samples, we next need to construct the reduced-order space and

map it to a probabilistic space from which new samples are easy to draw. Any sample

generated in the low-dimensional surrogate space can be recovered to spatial modesΦ

through Eq. (40) and further reconstructed to a new multiscale microstructure realiza-

tion in the original input space. Polynomial chaos expansion [9, 29, 30] is therefore

introduced to representφ j
i as a function of Gaussian or uniform random variablesζ. As

mentioned before, components of{φ j
i }

r i
j=1 are uncorrelated but not necessarily indepen-

dent. Although Rosenblatt transformation [31] can be used to decompose the problem

to a set of independent random variables, this is computationally expensive, especially

for high-dimensional problems. In this work, we assume the independence between

the components of{φ j
i }

r i

j=1. It has been shown in various applications [32, 33, 28, 16]

that this assumption gives rather accurate results.

Following the independence assumption ofφ j
i , each of them can be expanded on to

an one-dimensional polynomial chaos (PC) basis of degreep:

φ
j
i (ω

j
i ) =

p
∑

k=0

γ
jk
i Υ

k
i (ζ

j
i (ω j

i )), j = 1, . . . , r i , (43)

where theζ j
i are i.i.d. random variables. The random basis functions{Υk

i }
p
k=0 are chosen

according to the type of random variableζ j
i that has been used to describe the random

17



input. For example, if Gaussian random variables are chosen then the Askey based

orthogonal polynomials{Υk
i } are chosen to be Hermite polynomials; ifζ j

i are chosen to

be uniform random variables, then{Υk
i } must be Legendre polynomials [29].

Uniform-Legendre format is taken for the projection of the reduced-order random

variables as it lends very close reconstruction of the PDFs of reduced variablesφ
j
i (see

Section 6). The PC coefficients are computed by

γ
jk
i =

E
[

φ
j
iΥ

k
i (ζ

j
i )
]

E
[

Υk
i (ζ

j
i )
] . (44)

When Uniform-Legendre is chosen, Eq. (44) becomes

γ
jk
i =

2k+ 1
2

∫ 1

−1
φ

j
iΥ

k
i (ζ

j
i )dζ j

i , j = 1, . . . , r i , k = 0, . . . , p. (45)

A proper method is needed to evaluate these integrals. It is noted that the random

variableφ j
i does not belong to the same stochastic space asζ

j
i , and we only haveN

realizations ofφ j
i . The distribution ofφ j

i is not known. A non-linear mappingΓ : ζ j
i →

φ
j
i is thus needed which preserves properties such thatΓ(ζ j

i ) andφ j
i have the same

distribution. A non-intrusive projection based on empirical cumulative distribution

functions (CDFs) of samples developed in [33] is utilized to build the map. The integral

in Eq. (45) is then computed using Gauss quadrature.

The non-linear mappingΓ : ζ → φ can be defined as shown below for eachφ j
i :

φ
j
i

d
= Γ

j
i (ζ

j
i ), Γ

j
i ≡ F−1

φ
j

i

◦ F
ζ

j
i
, (46)

whereF
φ

j

i
andFζ

j
i

denote the CDFs ofφ j
i andζ j

i , respectively. Here, the equalities,

“
d
=” is interpreted in the sense of distribution such that the probability density functions

(PDFs) of random variables on both sides are equal. The marginal CDF ofφ
j
i samples

can be evaluated numerically from the available data. Kernel density estimation is used

to construct the empirical CDF ofφ j
i . Let {φ j,(s)

i }Ns=1 be theN samples ofφ j
i obtained

from Eq. (40). The marginal PDF ofφ j
i is then:

p
φ

j

i
(φ j

i ) ≈
1
N

N
∑

s=1

1
√

2πτ
exp















−
φ

j
i − φ

j,(s)
i

2τ2















. (47)

18



The marginal CDF ofφ j
i is obtained by integrating Eq. (47) and the inverse CDF can be

computed as well. Having the mapΓ j
i , the coefficientsγ jk

i are subsequently computed

via Gauss quadrature.

After mapping the reduced space to uniform distribution random variables, the

Monte Carlo method can be used to sample new microstructure realizations.

5. Problem Definition and Initial Data Set

The problem of interest in this work is the variability of mechanical properties

of forged disks due to (initial) microstructure uncertainties. The very first task is to

generate initial correlated random microstructures of workpieces to be used as the input

to the stochastic simulation. The initial workpiece samples are a set of cylindrical

(rectangular in a 2D axisymmetric representation) ingots, each point of which is linked

to a distinct microstructure (Fig. 3).

Figure 3: Input to the multiscale deformation simulator.

We generate realizations of the preforms with correlated microstructure using a pre-

processing that deforms a set of raw ingots with random surfaces into regular cylinders.

The simulations are done within a 2D axisymmetric Lagrangian FE framework. The

ingots are discretized by 10×6 quadrilateral elements, each of which contains 4 Gauss

points for the integration in the element domain. Each Gauss point is linked to a mi-

crostructure consisting of 20 grains. One thousand raw ingots whose upper surfaces

(Fig. 4) are represented by degree 6 Bezier curves (Eq. (48)) are firstly created.

zβ(a,ω) = 0.5×
















1+
6

∑

i=1

βi(ω)ϕi(a)

















, (48)
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where

ϕ1(a) = (1− a)6 + 6a(1− a)5,

ϕ2(a) = 15a2(1− a)4,

ϕ3(a) = 20a3(1− a)3,

ϕ4(a) = 15a4(1− a)2,

ϕ5(a) = 6a5(1− a),

ϕ6(a) = a6,

wherea = x/L is the normalizedx-coordinate,βi(ω) are Bezier coefficients, which are

i.i.d. randomly sampled from the uniform distributionU(−0.1, 0.1). At the beginning,

we assume all the microstructures to be identical (same grain sizes and texture). The

only difference between ingot samples is the random shape of the upper surface. All

raw ingots are then used as an input to a deterministic flat-die forging process, during

which, their wavy surfaces are flattened under strain ratev = 0.01s−1 (Fig. 4). Since

all workpieces go through distinct deformation processes due to their unique surface

shapes, the resultant microstructures will vary from point to point and from sample to

sample. The resultant microstructures after pre-processing are collected as the data-

base of the following stochastic simulation. They will be adopted to build the reduced-

order model. In the next step stochastic simulation, new microstructure samples will

be sampled and assigned to a regular-shaped workpiece. The flattened workpieces in

the pre-process are abandoned. The information about the generation of the random

microstructure samples is totally blind to the following stochastic forging simulation.

Since the crystal plasticity constitutive model adopted here only updates grain ori-

entations while leaving grain size untouched, the uncertainty source of the stochastic

simulation is the texture of microstructures, which has been proven to have great effect

on the mechanical response and properties of polycrystals [12]. The dimensionality

of the input isnel × nint × nf eature = 60 × 4 × 60 = 14400, wherenel is the num-

ber of elements in the macroscale discretization,nint is the number of Gauss points of

an element, andnf eature is the dimensionality of the random feature that describes a

microstructures (20 set of 3-dimensional Rodrigues parameters in here). In what fol-
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Figure 4: Left: Initial ingot with random upper surface and identical microstructures. Right: Flattened ingot

having various resultant microstructures.

lows, the vectorA(x, s,ω) is written as a scalarA(x, s,ω) since the only random source

is grain orientation. The number of features that describe a microstructure is there-

fore beingm = 1, leading to the fact thatA(x, s,ω) is a scalar for a specificx, s and

ω. Consequently, the reduced macroscale modes{Φi(x,ω)}di=1 and reduced represen-

tations{φ j
i (ω)}r i

j=1, i = 1, . . . , d are also scalars for a specificx andω. We will adopt

the aforementioned two-step KLE to reduce the dimensionality of the stochastic input

space driven by the 1000 sets of microstructure samples. The information of how these

samples are generated is blind to the model reduction process. The reduced random

variables will be mapped to standard multivariate uniform distribution (U(−1, 1)) fol-

lowing the PC expansion through the non-intrusive projection. New samples will be

drawn from the reduced space and reconstructed to be the input to the multiscale phys-

ical simulator. Monte Carlo simulation is employed to solve the underlying stochastic

equations in conjunction with the multiscale deterministic forging solver.

The procedure of the complete uncertainty quantification is illustrated in Fig. 5

and summarized below. (a) to (b): Given a number of initial ingot samples, compute

the separated mesoscale and macro-random coupled modes using the bi-orthogonal

KLE. (b) to (c): Project the macro-random coupled modes to low-dimensional space

through a second-level KLE. (c) to (d) Map the reduced stochastic space to a known

(e.g. uniform) distribution using PCE. (d) to (c): Generate new samples in the known

low-dimensional distribution, and find their counterparts in the reduced surrogate space
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Figure 5: Procedure of the stochastic multiscale simulationfor quantifying variability of properties of forging

disks due to microstructure uncertainty.

through PCE. (c) to (b) Recover macroscale modes via KLE. (b) to (a): Reconstruct

physical representation (microstructures of the workpiece) of new samples using bi-

orthogonal KLE after obtaining the macroscale modes. (a) to (e): Perform multiscale

forging simulations to obtain the properties of the reconstructed samples. Repeating

(d)-(c)-(b)-(a)-(e) multiple times, the statistics of properties of the products can be

evaluated.

6. Numerical Examples

We will next validate the bi-orthogonal decomposition strategy for reducing the

complexity of stochastic multiscale input. Examples comparing reconstructed features

and initial sample features, as well as their corresponding properties after forging, are

demonstrated.

22



6.1. Construction and validation of the reduced-order model

As described in the previous section, 1000 sets of preforms with correlated mi-

crostructures (textures) that resulted from the same preprocess are the input to the

stochastic simulation. The variability of mechanical properties of the products is in-

duced by the randomness of these initial microstructures. Since each macropoint of

the workpiece associates with a 20-grain microstructure, the total dimensionality of the

input is 14400 according to the calculation in the previous section. It is impossible to

explore such a high dimensional space and investigate the variability of corresponding

properties of products. The bi-orthogonal decomposition, followed by a second-level

KLE, is applied to the 1000 14400-dimensional samples. We will determine the opti-

mal dimensionality of the reduced space by the proportion of energy captured by the

first few principal components.

In bi-orthogonal KLE, the random energy of thek-th macro-random coupled mode

is defined by [19]

E(h)
k (ω) :=

∫

S
ρ

(h)
k Φ

(h)
k (x,ω) ·Φ(h)

k (x,ω)dx, (49)

The expectation of the random energy is therefore

Ē(h)
k = 〈E

(h)
k 〉. (50)

Since the mean featurēA defined by Eq. (28) has been extracted from the centerized

sampleŝA, which are the data base of the expansion, the inner product Eq. (30) defined

with h = 0 should be 0. As a result,h = 0 is not appropriate for constructing the

covariance matrix and performing model reduction. The covariance matrix whenh = 1

is identical with the one whenh = 2, due to Eq. (37). Therefore, we selecth = 1 as the

inner product in the macroscale for the current work.

Computing the energy expectation for all spatial modes, the energy spectrum is

plotted in Fig. 6 forh = 1. The energy proportion captured by the firstd modes is

defined as

P(h)
Energy(d) =

∑d
i=1 Ē(h)

i
∑M

j=1 Ē(h)
j

, (51)

where the mean energies are sorted in descending order.
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Figure 6: The energy and eigenvalue spectrum of initial samples. The value ofy-axis is the total energy

proportion captured by the firstx principal components.

It is observed that the first few energy components capture most of the total energy.

The energy spectrum overlaps with the eigenvalue spectrum defined by

P(h)
Eigenvalue(d) =

∑d
i=1 ρ

(h)
i

∑M
j=1 ρ

(h)
j

. (52)

To effectively reduce the complexity while preserving most of the features of the

initial samples, we truncate the bi-orthogonal KLE expansion keeping only the first

3 modes, which captures almost 95% of the total energy. This truncation strategy is

similar to that in conventional KLE.

Remark 1: Note that if the mean feature is defined as [19]

Ā(x) :=
1
|M|

∫

M
〈A(x, s,ω)〉ds, (53)

the bi-orthogonal decomposition gives different results. In this case the first type of

macroscale inner product is not zero any more, and the second type covarianceC(2)(s, ś)

becomes small. The micro and macro modes become different from the ones presented

earlier.

Remark 2: The overlap of the eigenvalue and energy spectrums in Fig. 6 is a result of

the current problem setup. Indeed, combining Eqs. (49) and (50), we obtain

Ē(h)
k =

∫

S
ρ

(h)
k

〈

Φ
(h)
k (x,ω) ·Φ(h)

k (x,ω)
〉

dx. (54)

Whenh = 1, and considering the orthogonality, we obtain

Ē(1)
k = ρ

(1)
k {Φ

(1)
k ,Φ

(1)
k }1 = ρ

(1)
k .
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The energy level of thek-th mode, in general, does not reflect the magnitude of the

corresponding eigenvalue. In another words, a mode that possesses large energy does

not necessarily correspond to a large eigenvalue. An example is shown in Fig. 7 for

the case that̄A is defined by Eq. (53) andh = 2. This outcome is consistent with the

results provided in [19]. These facts complicate the performance of the bi-orthogonal

decomposition. Therefore, alternative setups (toh = 1 and Eq. (28)) are not used in the

current work.
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Figure 7: The eigenvalue and mean energy of the bi-orthogonal KLE. Both quantities are normalized with

respect to their maximum values.

The reduced spatial modes{Φ1,Φ2,Φ3} are presented by 1000 realizations of 240-

dimensional vectors, because the mesoscale modes have been segregated. The next

task is to separate the random variables from spatial coordinates using a second-level

KLE, which results in further reduction of the random space. For eachΦi (i = 1, 2, 3),

we perform an independent KLE and keep the largestr i components that capture more

than 95% of the total energy ofΦi . The energy spectrum of the three modes are plotted

in Fig. 8. The number of preserved components arer1 = 2, r2 = 3, r3 = 3, respectively.

The dimensionality of the final reduced space is thereforer = r1 + r2 + r3 = 8.

Remark 3: It is interesting to note that the differences between large eigenvalues and

small eigenvalues of the macro-modesΦi reduces asi increases. To capture 95% of the

total energy, only the largest 2 eigenvalues is enough forΦ1, while forΦ2 andΦ3 three

eigenvalues are needed. We also examined the macro-modes that correspond to lower

energy in the bi-orthogonal KLE and discovered that 7, 9, 35, and 108 principle com-

ponents are needed to capture 95% energy of macro modes fromΦ4 toΦ7, respectively.
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Figure 8: The eigenvalue spectrum of three macro-random coupled modes. The value ofy-axis is the total

energy proportion captured by the firstx principal components. Only the first 50 dimensions are shown.

The increase of the dimensions (e.g. number of principal components) that are neces-

sary to capture the same proportion of the total energy is dramatic, when the energy

captured by the macro-modesΦi decreases. For this reason, keeping a small number of

Φi is of great importance to reduce the stochastic space. In the current example,d = 3

is the optimal choice.

As we discussed before, the reduced surrogate space of input after two-step KLE

needs to be projected to a well-shaped equivalent space through PCE. Therefore, new

samples can be easily drawn. Legendre polynomials are selected as we will map the

reduced-order random variables to uniform distributionsU(−1, 1). The order of the PC

basis is set to be 12, which gives accurate estimation to the distributions of the reduced

representations. We plot and compare the PDFs of initial reduced representations and

new samples in Figs. 9-11. The distributions of the initial reduced representations

φ
j
i , i = 1, . . . , d, j = 1, . . . , r i are computed from the histogram of the given 1000 initial

samples derived by the two-step KLE. On the other hand, 10000 new samples are

randomly sampled from the uniform distribution and mapped to the surrogateφ
j
i space

via PCE. A great consistence of the two curves is observed and thus the PCE on reduced

random variables is successful.

To check the performance of the multiscale model reduction, we compare a recon-

structed sample with its original realization. An 14400-dimensional array,A, contain-

ing the texture information of all initial microstructures over a workpiece realization
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Figure 9: Marginal PDFs of initial low-dimensional representations (i.e. random variables),φ
j
1, j = 1, 2,

corresponding to the first spatial modeΦ1 (the reduced representations obtained after two-step KLE on the

1000 given texture samples) and identified random variables obtained using PCE (reconstructed through PCE

on 10000 randomly generated samples from uniform distribution). The distributions are constructed through

kernel density based on data.

is projected to the 8-dimensional uniform distribution through the two-step KLE-PCE

process. These 8 reduced variables within (−1, 1) are then mapped back to a 14400-

dimensional texture array through the inverse PCE and KLE. We first compare the re-

stored spatial modes from the reduced variables with the initial modes obtained through

bi-orthogonal KLE on the original sample. The 3 modes capturing most energy are

shown. It is observed in Fig. 12 that the restored{Φi}3i=1 are close to the original ones.

We further reconstruct the texture realization in the physical space based on the

restored spatial modes through Eq. (38). The restored texture is compared with the

original one and a relative error defined as

ε =
1
M

M
∑

i=1

∣

∣

∣

∣

∣

∣

∣

Ai
Original − Ai

Restored

Ai
Original

∣

∣

∣

∣

∣

∣

∣

, (55)

is computed. In Eq. (55),M is the dimensionality of the texture array of the entire

workpiece (here,M = 14400),Ai
Original andAi

Restoredare the Rodrigues parameters of

the original and restored samples, respectively. Notice that each orientation is described

by 3 Rodrigues parameters. In the current setup, we put them all in an 1-dimensional

array. Figure 13 (a) shows the reconstructed and original texture of the microstructure

associated with one macropoint (for a single microstructure). The relationship between

the two samples throughout the entire workpiece is depicted in Fig. 13(b). We observe
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Figure 10: Marginal PDFs of initial low-dimensional representations (i.e. random variables),φ
j
2, j = 1, 2, 3,

corresponding to the second spatial modeΦ2 (the reduced representations obtained after two-step KLE on

the 1000 given texture samples) and identified random variables obtained using PCE (reconstructed through

PCE on 10000 randomly generated samples from uniform distribution). The distributions are constructed

through kernel density based on data.

a nearly straight line in the original-restored texture plot, meaning that the two samples

are almost identical. The deviation of the restored samples from the original one is

small. The great consistence of the reconstructed and original samples is obtained.

The relative error is∼ 4.26%.

6.2. Stochastic multiscale forging simulation

After establishing the connection between the microstructure space and the reduced

surrogate space, we are ready to draw random samples for the investigation of the

mechanical properties of workpieces whose microstructures are statistically similar to

the given data. The mean and standard deviation of the equivalent strain, stress, and

strength fields of the forged workpiece are of interest. The effective strain and stress are

evaluated using Eqs. (21) and (22). The effective strength is measured by the average of

the slip resistances over all slip systems of all grains in a microstructure (Eq. (24)). The

mean and standard deviation fields computed based on 4032 MC samples randomly

generated from the reduced-space are plotted in Figs. 14 and 15. The fields computed

directly from the 1000 initial samples are also plotted (in the same figures) in com-

parison with the reconstructed results. The mean fields of properties computed from

reconstructed samples are close to the ones computed from the initial samples. This
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Figure 11: Marginal PDFs of initial low-dimensional representations (i.e. random variables),φ
j
3, j = 1, 2, 3,

corresponding to the third spatial modeΦ3 (the reduced representations obtained after two-step KLE on the

1000 given texture samples) and identified random variables obtained using PCE (reconstructed through PCE

on 10000 randomly generated samples from uniform distribution). The distributions are constructed through

kernel density based on data.

is consistent with the bi-orthogonal decomposition setup. The standard deviation of

the properties of reconstructed samples, however, shows deviation from that computed

using the initial samples. This is because the limited number of given samples are not

enough to represent the entire random microstructure space (especially the higher order

statistics). On the other hand, the reconstructed samples are generated from the surro-

gate space which is built to efficiently represent the complete microstructure space.

Random samples from the reduced-order model reveal features that cannot be captured

by the given initial samples. The gained efficiency in sampling in the low-dimensional

surrogate microstructure space is prominent.

A convergence test is also conducted using 8064 random MC samples. The com-

parison of the mean and standard deviation between 4032 and 8064 samples are plotted

in Figs. 16 and 17. The relative difference of quantities between the two sets of sim-

ulations defined as (P8064− P4032)/P8064, wherePN is the quantity evaluated usingN

MC samples, is plotted in Fig. 18. From the difference we see that the mean fields of

the two simulations are almost the same. The relative error of standard deviation fields

is larger than that of the mean field. The largest error is around 0.05.

In order to test the convergence of the bi-orthogonal decomposition model reduc-

tion scheme, we next keep more components in the second-level KLE so that they
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Figure 13: (a) The reconstructed and original texture of the microstructure at a single macropoint. (b)

The comparison between the reconstructed texture and its original realization of the entire workpiece. The

reconstructed texture is obtained from a 8-dimensional representation.

capture 99% energy of the macro-modes. The dimensionality of the reduced space be-

comesr = r1+ r2+ r3 = 3+7+8 = 18. The reconstructed macro-modes are obviously

closer to their original samples as shown in Fig. 19. Similarly, the reconstructed texture

has smaller error,ε = 0.0398, comparing with the original sample (Fig. 20).

The mean and standard deviation of effective strain, stress and strength fields are

plotted in Fig. 21. The relative difference of fields defined as (P18 − P8)/P18, where

Pd is the quantity evaluated fromd-dimensional reduced space, is shown in Fig. 22.

It is observed that keeping 18 reduced variables gives very similar results as keeping

8 low-dimensional representations, since the total energy captured by the two cases is
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Figure 14: Mean field of the properties of the forged product. Upper: results extracted from 1000 initial

samples; lower: results evaluated through 4032 MC samples randomly generated from the 8-dimensional

reduced space. (a) effective strain, (b) effective stress, (c) effective strength.

close. The number of samples used here is 8064.

The distributions of properties of any point on the solid can also be computed. In

Fig. 23, we plot the equivalent strain, stress, and strength distributions, as well as the

convex hull of these three quantities, at a single spot of the workpiece, where the equiv-

alent strain is large. All distributions and the convex hull [34] are evaluated according

to the results of 4032 randomly generated samples from the 8-dimensional reduced

space in the MC simulation just discussed.

7. Conclusions

A multiscale model reduction scheme based on the bi-orthogonal KLE, conven-

tional KLE and PCE was presented. The basic idea is to decompose the multiscale

random field into a few orthogonal modes in different (macro and meso) scales and

separate the inherent random variable from the two scale coordinates. A non-intrusive

projection strategy is employed to map the reduced representations after the two-step
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Figure 15: Standard deviation field of the properties of the forged product. Upper: results extracted from

1000 initial samples; lower: results evaluated through 4032 MC samples randomly generated from the 8-

dimensional reduced space. (a) effective strain, (b) effective stress, (c) effective strength.

KLE to a multivariate uniform distribution. The reconstructed realizations show agree-

ment with the initial microstructure samples that are given as the known information.

In the context of polycrystalline processes, the multiscale random field is location-

dependent high-dimensional random microstructure features, which is reduced to a

low-dimensional surrogate space. By sampling in the reduced surrogate space, we can

equivalently exploit the original high-dimensional microstructure space. Properties of

a continuum workpiece subjected to forging are evaluated by a multiscale solver which

couples FE large deformation simulator with crystal plasticity constitutive model. The

mean and standard deviation of the equivalent strain, stress, and strength of the fi-

nal product are computed using MC and ASGC methods. It is seen that the reduced

model captures most features of the full model making feasible to perform large scale

stochastic multiscale simulation. Future studies will focus on the model reduction of

realistic microstructures described by pixels rather than statistical features as in the

present work. Moreover, a more robust strategy of decomposing macro-random modes
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Figure 16: Convergence test of the mean field of the properties of the forged product. Upper: results extracted

from 4032 MC samples randomly generated from the 8-dimensional reduced space; lower: results evaluated

through 8064 MC samples randomly generated from the 8-dimensional reduced space. (a) effective strain,

(b) effective stress, (c) effective strength.

after bi-orthogonal KLE is of interest.

Acknowledgements

This research was supported by an OSD/AFOSR MURI09 award on uncertainty

quantification, the U.S. Department of Energy, Office of Science, Advanced Scientific

Computing Research and the the Materials Design and Surface Engineering program of

the NSF (award CMMI-0757824). This research used resources of the National Energy

Research Scientific Computing Center, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional

computing resources were provided by the NSF through TeraGrid resources provided

by NCSA under grant number TG-DMS090007.

33



1

1.2

1

1.2

equiv_stress 1

1.2

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

state_variable

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

equiv_stress

40

36

32

28

24

20

16

12

8

4

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

equiv_strain

0.013

0.011

0.009

0.007

0.005

0.003

0.001

8064 samples

4032 samples

(a) (b) (c)
x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

equiv_strain

0.013

0.011

0.009

0.007

0.005

0.003

0.001

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1 equiv_stress

40

36

32

28

24

20

16

12

8

4

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

state_variable

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2
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Figure 18: Relative difference of the mean and standard deviation field of the properties of the forged product

computed by 8064 and 4032 MC samples drawn from the 8-dimensional reduced space. Upper: difference

of mean fields; lower: difference of standard deviation fields. (a) effective strain, (b) effective stress, (c)

effective strength.
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Figure 19: Comparison of reconstructed and initial spatial modes of a single texture sample. The original

modes are obtained by projecting a initial texture sample to eigenbasis through bi-orthogonal KLE. The

reconstructed modes are recovered from the low-dimensional representations, with higher dimensions, via
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Figure 20: (a) The reconstructed and original texture of the microstructure at a single macropoint. (b)

The comparison between the reconstructed texture and its original realization of the entire workpiece. The

reconstructed texture is obtained from a 18-dimensional representation.
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Figure 21: The mean and standard deviation fields of effective strain, stress, and strength computed based on

random microstructures reconstructed from 18-dimensional reduced-order representations.
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Figure 22: The relative error of mean and standard deviation fields of effective strain, stress, and strength

computed based on random microstructures reconstructed from 8-dimensional and 18-dimensional reduced-

order representations.
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Figure 23: Variability of properties at one single point of the forged disk with random microstructures. (a)

A convex hull showing the envelope of the three properties. (b) Equivalent stress distribution. (c) Equivalent

strength distribution. (d) Equivalent strain distribution.
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